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Abstract High Dimensional Model Representation (HDMR) based methods are
used to generate an approximation for a given multivariate function in terms of less
variate functions. This paper focuses on Hybrid HDMR which is composed of Plain
HDMR and Logarithmic HDMR. The Plain HDMR method works well for represent-
ing multivariate functions having additive nature. If the function under consideration
has a multiplicative nature, then the Logarithmic HDMR method produces better
approximation. Hybrid HDMR method aims to successfully represent a multivariate
function having neither purely additive nor purely multiplicative nature under a hybrid-
ity parameter. The performance of the Hybrid HDMR method strongly depends on
the value of this hybridity parameter because this parameter manages the contribution
level of Plain and Logarithmic HDMR expansions. The main purpose of this work is
to optimize the hybridity parameter to get the best approximations. Fluctuationless-
ness Approximation Theorem is used in this optimization process and in evaluating
the multiple integrals appearing in HDMR based methods. A number of numerical
implementations are given at the end of the paper to show the performance of our
proposed method.
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1 Introduction

Dealing with multivariate functions may become a serious problem for the numerical
and analytical calculations in scientific and engineering problems of physics, chemis-
try and the other research areas of applied mathematics such as atmospheric modelling,
atmospheric dynamics, source-sinks of trace gases, operational models, stratospheric
chemical kinetics, multivariate data modelling, financial applications and so on. To
overcome these difficulties, researchers work on developing divide-and-conquer based
methods to deal with less variate functions instead of a given multivariate function.
High Dimensional Model Representation (HDMR) based methods are of type divide-
and-conquer.

HDMR was first proposed by Sobol [1] and now it is named as Sobol HDMR or Plain
HDMR. After Sobol’s innovative work, Plain HDMR method was more generalized
by Rabitz [2–4] and Demiralp [5]. Furthermore, Demiralp and his group [5–12] devel-
oped several HDMR based methods for different scientific engineering problems to
increase its power and efficiency.

The Plain HDMR method is an expansion with 2N terms. This expansion can be
described as finite summation of a constant term, N univariate terms, N (N − 1)/2
bivariate terms and so on. If all these 2N terms are used in the expansion then a given
multivariate function can be represented exactly. However, to reduce the mathematical
and computational complexity, it is not preferred to use all HDMR terms. Only the
first few terms are taken into consideration from the expansion and it is sufficient to
make an approximation to represent the given multivariate function. How well the
multivariate function is represented through HDMR approximant is determined by
using additivity measurers. These measurers were defined by Demiralp [5] and these
are monotonously increasing entities having values in the unit interval, [0, 1]. We can
make an error analysis for the obtained HDMR approximant of the given multivariate
function by using additivity measurers.

In literature, there are several HDMR based methods to obtain a better approxi-
mation for different types of multivariate functions. Plain HDMR method works well
when the function under consideration is purely or dominantly additive and it becomes
poor as the multiplicativity of the original function increases. Factorized HDMR [6,7]
and Logaritmic HDMR [8,9] methods work well as the function under consider-
ation is purely or dominantly multiplicative and they become poor as the additivity
increases.

If the multivariate function under consideration is neither dominantly additive nor
dominantly multiplicative then we need a new HDMR algorithm. For this purpose,
Hybrid HDMR method was developed with an expansion having the combination
of Plain HDMR and Factorized HDMR expansions under an hybridity parameter
[10,11]. On the other hand, it is known that the measurers defined for the Factor-
ized HDMR method have no monotonously increasing nature because of its multi-
plicative expansion. That is, there is no warranty to get a better approximation when
a higher variate component is used in representing the multivariate function under
consideration. To this end, another combination for the Hybrid HDMR expansion
can be considered. This results in combining Plain HDMR and Logarithmic HDMR
expansions again under an hybridity parameter [12]. The most important issue of this
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study is to optimize this parameter. To increase the efficiency of the Hybrid HDMR
expansion, it is critical to select the most appropriate value for the hybridity param-
eter because this parameter manages the contribution level of two expansions to the
resulting expansion of Hybrid HDMR. Hence, the main purpose of this work is to
combine the two HDMR based methods, Plain and Logarithmic HDMRs under the
optimized hybridity parameter to get a better representation for the given multivariate
function.

The HDMR based methods have multiple integrals to be evaluated to obtain the
structures of the components appearing in the expansion. One way is to evaluate
the integrals analytically. This increases the mathematical and computational com-
plexity because of the incapabilities of standard numerical methods, computer based
algebraic tools and computer hardware features. In addition, the Logarithmic HDMR
method includes integrals of natural logarithm of the given function which is usually a
problematic case. To bypass these disadvantages, another way is to apply the Fluctua-
tionlessness Approximation Theorem, which was first proposed by Demiralp [13–16],
in the algorithm to gain ability of evaluating these integrals. This theorem facilitates
the numerical evaluation of complicated integral structures whose values can not be
easily obtained analytically. Besides, it allows us to obtain the results of the integrals
even that cannot be evaluated analytically. The theorem is also used to evaluate the
multiple integrals of the Plain HDMR algorithm to get the results easily.

There are also some other works about applying the HDMR philosophy to scientific
problems. These studies are about stochastic finite element analysis [17], reliability
analysis [18], sensitivity analysis [19].

This paper is organized as follows. The second section includes the mathematical
background of Plain HDMR, Logarithmic HDMR, Hybrid HDMR and the Fluctua-
tionlessness Approximation Theorem. The usage of the Fluctuationlessness Approx-
imation Theorem in Hybrid HDMR is given in the third section. The fourth section
covers the hybridity parameter optimization process of Hybrid HDMR. The numeri-
cal implementations to show the performance of our new method are discussed in the
fifth section. Finally, the concluding remarks are mentioned in the last section of the
paper.

2 Mathematical background

This section covers the details of the HDMR based methods and the Fluctuation-
lessness Approximation Theorem that are used in this study. Since the expansion of
the Hybrid HDMR method consists of Plain HDMR and Logarithmic HDMR, the
first two subsections are about the algorithm of how to represent a multivariate func-
tion by using Plain HDMR and Logaritmic HDMR respectively. The third subsection
describes the details of the Hybrid HDMR method. The efficiency of this method is
managed through a hybridity parameter. This parameter identifies the contribution
level of Plain and Logarithmic HDMR expansions to the representation of the given
multivariate function. One of the most important tasks of this study is to optimize the
value of this parameter to obtain better approximations. For this purpose, the details
of the Fluctuationlessness Approximation Theorem are given in last subsection.

123



2226 J Math Chem (2012) 50:2223–2238

2.1 The Plain HDMR Method

The basic formula for Plain HDMR to represent a given multivariate function,
f (x1, . . . , xN ), is given as

f (x1, . . . , xN )= f0+
N∑

i1=1

fi1(xi1)+
N∑

i1,i2=1
i1<i2

fi1i2(xi1 , xi2) + · · · + f1...N (x1, . . . , xN )

(1)

The right hand side components of the above equation can be uniquely obtained by
imposing mutual orthogonality amongst these components [5]

( fi1i2...ik , fi1i2...il ) = 0, {i1, i2, . . . , ik} �≡ {i1, i2, . . . , il}, 1 ≤ k, l ≤ N (2)

where

(u, v) ≡
b1∫

a1

dx1 · · ·
bN∫

aN

dxN W (x1, . . . , xN ) u(x1, . . . , xN )v(x1, . . . , xN ) (3)

The weight function appearing in the abovementioned orthogonality conditions is
assumed to be a product of univariate functions each of which depends on a different
independent variable

W (x1, . . . , xN ) ≡
N∏

j=1

W j (x j ), x j ∈ [
a j , b j

]
, 1 ≤ j ≤ N (4)

These orthogonality conditions are equivalent to the following Sobol’s vanishing con-
ditions

b1∫

a1

dx1 · · ·
bN∫

aN

dxN W (x1, . . . , xN ) fi1(xi1) = 0, 1 ≤ i ≤ N (5)

For the determination of the right hand side components of the Plain HDMR expansion
certain projection operators are defined. The following projection operator is defined
for the determination of the constant HDMR term, f0

P0g (x1, . . . , xN ) ≡
b1∫

a1

dx1 · · ·
bN∫

aN

dxN W (x1, . . . , xN ) g (x1, . . . , xN ) (6)

If P0 is applied on both sides of Eq. (1), all the higher than zero variate components
of Plain HDMR vanish because of the vanishing property (proposed by Sobol and
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revised by Rabitz) given in (5) and we can write the following equation for the constant
term

f0 = P0 f (x1, . . . , xN ) (7)

To determine the univariate HDMR terms, we need to define other projection operators
denoted by Pi1 (1 ≤ i1 ≤ N ). They are equivalent to P0’s new form obtained after
removing the integration over xi1 and discarding the univariate weight function factor
Wi1

(
xi1

)
where 1 ≤ i1 ≤ N

Pi1 g(x1, . . . , xN ) ≡
b1∫

a1

dx1W1(x1) · · ·
bi1−1∫

ai1−1

dxi1−1Wi1−1(xi1−1)

×
bi1+1∫

ai1+1

dxi1+1Wi1+1(xi1+1) · · ·
bN∫

aN

dxN WN (xN )g(x1, . . . , xN ) (8)

If we apply Pi1 on both sides of (1) and take the Sobol’s vanishing conditions or equiv-
alently Demiralp’s orthogonality conditions into consideration then we may write the
general structure of the univariate Plain HDMR components as follows

fi1

(
xi1

) = Pi1 f (x1, . . . , xN ) − f0, 1 ≤ i1 ≤ N (9)

The determination of higher multivariate Plain HDMR components can be realised by
defining other projection operators in the same manner.

HDMR is in fact a finite sum and it can be truncated at some level of multivariance
to get an approximation since it becomes quite difficult to calculate all the right hand
side components as the multivariance increases. Hence we can denote the truncated
sums of Plain HDMR by si (x1, . . . , xN ) where i denotes the level of multivariance

s0(x1, . . . , xN ) = f0

s1(x1, . . . , xN ) = s0(x1, . . . , xN ) +
N∑

i1=1

fi1(xi1)

s2(x1, . . . , xN ) = s1(x1, . . . , xN ) +
N∑

i1,i2=1
i1<i2

fi1i2(xi1 , xi2) (10)

Here, the cases i = 0, i = 1 and i = 2 correspond to the constant, univariate and
bivariate HDMR approximants respectively.

2.2 The logarithmic HDMR method

Logarithmic HDMR method was developed by using Plain HDMR philosophy. This
method is based on expanding the natural logarithm of a given nonnegative multivariate
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function to HDMR instead of the function itself [8,9]. The Logarithmic HDMR for-
mula for a given multivariate function can be expressed as follows

ln [ f (x1, . . . , xN ) − φ (x1, . . . , xN )]

= ϕ0 +
N∑

i1=1

ϕi1

(
xi1

) +
N∑

i1,i2=1
i1<i2

ϕi1i2

(
xi1 , xi2

) + · · · (11)

where φ (x1, . . . , xN ) is called as “Reference Function” and it is used for producing
a nonnegative or preferably positive core function for the logarithm. The right hand
side components of (11) are mutualy orthogonal and can be determined by tracing the
basic rule of the HDMR method.

If basic Logarithmic HDMR expansion given in (11) is rearranged, the following
formula is obtained for Logarithmic HDMR

f (x1, . . . , xN )=φ (x1, . . . , xN )+eϕ0

⎡

⎣
N∏

i1=1

eϕi1

(
xi1

)
⎤

⎦

⎡

⎢⎢⎣
N∏

i1,i2=1
i1<i2

eϕi1i2

(
xi1 ,xi2

)

⎤

⎥⎥⎦ × · · ·

(12)

The explicit expressions of Logarithmic HDMR approximants can be written as
follows when the reference function is assumed to be vanishing for simplicity

π0(x1, . . . , xN ) = eϕ0

π1(x1, . . . , xN ) = π0(x1, . . . , xN )

N∏

i1=1

eϕi1

(
xi1

)

π2(x1, . . . , xN ) = π1(x1, . . . , xN )

N∏

i1,i2=1
i1<i2

eϕi1i2

(
xi1 ,xi2

)
(13)

where indexed πs stand for the Logarithmic HDMR approximants. The other approx-
imants including the higher variate components of the Logarithmic HDMR expansion
can be written in the same manner. We can determine the structures of the right hand
side components of relation (11) by using the steps of the Plain HDMR method.
Then, we use this Logarithmic HDMR expansion in our new form of Hybrid HDMR
expansion.

2.3 The hybrid HDMR method

The general expansion for Hybrid HDMR which is the combination of Plain HDMR
and Logarithmic HDMR can be given as follows
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f (x1, . . . , xN ) = α

⎛

⎝ f0 +
N∑

i1=1

fi1(xi1) + · · ·
⎞

⎠

+(1−α)

⎛

⎝φ (x1, . . . , xN )+eϕ0

⎡

⎣
N∏

i1=1

eϕi1

(
xi1

)
⎤

⎦ × · · ·
⎞

⎠ (14)

where α is named as hybridity parameter. The reference function, φ (x1, . . . , xN ), will
be assumed to be vanishing as stated in the previous subsection.

Using relation (14), the following general structure for the Hybrid HDMR approx-
imants can be defined as

f (x1, . . . , xN ) ≈ h jk(x1, . . . , xN ;α) ≡ αs j (x1, . . . , xN )+(1−α)πk(x1, . . . , xN )

(15)

where 1 ≤ j, k ≤ N . Here, s j (x1, . . . , xN ) and πk(x1, . . . , xN ) correspond to the j-th
order Plain HDMR approximant and the k-th order Logarithmic HDMR approximant
respectively. The hybridity parameter, α, plays an important role to determine the best
approximation through Hybrid HDMR. To this end, we need a mechanism to specify
a value for this parameter. In this study, an algorithm for this purpose is constructed
and the details of this algorithm is given in the fourth section.

On the other hand, it is important to examine the performance of these Hybrid
HDMR approximants. In other words, how well does obtaining approximant repre-
sent the given multivariate function? To measure the approximating capability of the
Hybrid HDMR approximant, we have to define a measuring device. The following
relative error formula is defined to measure the approximating capability of the related
approximant

Nh jk =
∥∥ f − h jk

∥∥2

‖ f ‖2 , 1 ≤ j, k ≤ N (16)

It can be easily seen that, if the value of Nh jk is equal to 0 for any j and k value, the
exact representation is obtained.

2.4 Fluctuationlessness approximation theorem

Fluctuationlessness Approximation Theorem for the univariate and multivariate func-
tions were suggested by Demiralp [15,16] and a brief description of this approximation
theory and its theorem are given as a summary below.

We symbolize the Hilbert space by H and its n-dimensional subspace by Hn . The
term, Fluctuation Operator, describes the difference between the unit matrix of H
and Hn . The proof of the following theorem which was given together with its proof
in Demiralp’s paper are given as follows
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Theorem The matrix representation of an algebraic multiplication operator multi-
plying its operand by f (x), a univariate function which is analytic on the interval
[a, b], over Hn is the image of the matrix representation of the operator x̂ , which
multiplies its operand by the independent variable, over Hn under the function f at
the fluctuationlessness limit [15]

F(n) ≈ f
(

X(n)
)

(17)

where X(n) is the matrix representation of the multiplication operator x̂ which multi-
plies its operand by the independent variable x and F(n) is the matrix representation of
f̂ stands for the algebraic operator which multiplies its operand by the function, f (x).

The matrices X(n) and F(n) are given as

X(n) ≡
⎡

⎢⎣
X (n)

11 · · · X (n)
1n

...
. . .

...

X (n)
n1 · · · X (n)

nn

⎤

⎥⎦ , X (n)
jk ≡ (

w j , x̂wk
)
, 1 ≤ j, k ≤ n (18)

F(n) ≡
⎡

⎢⎣
F (n)

11 · · · F (n)
1n

...
. . .

...

F (n)
n1 · · · F (n)

nn

⎤

⎥⎦ , F (n)
jk ≡ (

w j , f̂ wk
)
, 1 ≤ j, k ≤ n (19)

where w j (x) functions are the members of an orthonormal basis set to span the Hilbert
space. The fluctuationlessness approximation method becomes equivalent to Gauss
quadrature [20,21] when polynomial structures are used as basis. Although the Gauss
quadratures always need polynomial basis set, fluctuationlessness approximation is
not limited by this basis set.

The left hand side of relation (17) is given in (19). Now, we need to find the struc-
ture of the right hand side of the same relation. For this purpose, first, the spectral
decomposition of the matrix, X(n) is written as

X(n) =
n∑

i=1

λiξ iξ
T
i (20)

where λi stands for the i-th eigenvalue of X(n) and ξ i stands for the corresponding
eigenvector. Using above relation, the right hand side of the relation given in (17) can
be given as

f
(

X(n)
)

=
n∑

i=1

f (λi ) ξ iξ
T
i (21)

Since we are dealing with multivariate functions in this work, we need to use the fluctu-
ationlessness theorem including multivariance features. The multivariate counterpart
of this theorem is also proven [16] and its matematical expression is as follows
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F(n) ≈ f
(

X(n1)
1 , . . . , X(nN )

N

)
(22)

This formula tells us that the matrix representation of the multivariate function is
aproximated by the image of the matrix representations of the N number of indepen-
dent variables under this function [16,22].

Here, when the spectral representations of matrices are used, the right hand side of
above equation becomes as follows

f (X1, . . . , XN) =
n1∑

i1=1

· · ·
nN∑

iN =1

f
(
λ

(1)
i1

, . . . , λ
(N )
iN

)
ξ i1···iN

ξ i1···iN
T (23)

where

ξ i1···iN
= ξ

(1)
i1

⊗ · · · ⊗ ξ
(N )
iN

(24)

Here, λ
(k)
ik

(1 ≤ k ≤ N ) is the ik th eigenvalue and ξ
(k)
ik

s are the corresponding eigen-

vectors of the matrix X(nk)
k . The operator ⊗ stands for the direct product operation.

3 Fluctuation free integration based hybrid HDMR method

The determination process of either Plain HDMR or Logarithmic HDMR components
consists of evaluating N -tuple integrals. One possible way is of course to evaluate the
integrations analytically. However, it is usually hard to get a result for the multiple
integrations even sometimes it is impossible. Hence, this work aims to evaluate these
integrals by using the fluctuationlessness approximation method [9]. In general, when
we apply the considered theorem to the integration, the approximate result of the
integral of a univariate function under the unit interval and unit weight is obtained as
follows

1∫

0

dx f (x) ≈
n∑

i=1

f (λi )
(

e1
(n)T

ξ i

)2
(25)

where e1
(n) is the n dimensional unit cartesian vector whose first element is 1 and the

others are 0. This result can be used to obtain the general structure of all Plain and
Logarithmic HDMR components. However, the domain of each independent variable
of a given multivariate function is assumed as ai ≤ xi ≤ bi where 1 ≤ i ≤ N in
which N stands for the number of independent variables. This means that we should
convert the given [ai , bi ] intervals to unit interval, [0, 1]. In this sense, the first step is
to write the following general structure of the constant HDMR component

f0 =
b1∫

a1

dx1 · · ·
bN∫

aN

dxN W (x1, . . . , xN ) f (x1, . . . , xN ) (26)
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To determine the structure of the constant and the higher variate components, a weight
selection is needed as the second step. The following weight, which also satisfies the
normalization criteria, is chosen

W (x1, . . . , xN ) =
N∏

i=1

1

bi − ai
, 1 ≤ i ≤ N (27)

The third step is to convert the intervals to unit interval and the following conversion
is used for this purpose

xi = (bi − ai )yi + ai , 1 ≤ i ≤ N (28)

When the integral evaluation process given in (25) and the interval conversion given in
(28) are applied to the relation (26), the constant component of Plain HDMR method
is approximately obtained as follows

f0 ≈
n1∑

k1=1

· · ·
nN∑

kn=1

[
N∏

i=1

(
e1

(ni )
T
ξ

(i)
ki

)2
]

f
(
λ

(k1)
1 , . . . , λ

(kN )
N

)
(29)

The same philosophy can be applied to the Logarithmic HDMR algorithm and the
constant Logarithmic HDMR component is obtained as

ϕ0 ≈
n1∑

k1=1

· · ·
nN∑

kn=1

[
N∏

i=1

(
e1

(ni )
T
ξ

(i)
ki

)2
]

q
(
λ

(k1)
1 , . . . , λ

(kN )
N

)
(30)

where

q (x1, . . . , xN ) ≡ ln [ f (x1, . . . , xN ) − φ (x1, . . . , xN )] (31)

The following univariate component structures can be determined by using the same
philosophy for the Plain and Logarithmic HDMR methods

fi1(xi1) ≈
n1∑

k1=1

· · ·
ni1−1∑

ki1−1=1

ni1+1∑

ki1+1=1

· · ·
nN∑

kn=1

⎡

⎢⎣
N∏

m=1
m �=i1

(
e1

(nm)T
ξ

(m)
km

)2

⎤

⎥⎦

× f
(
λ

(k1)
1 , . . . , λ

(ki1−1)

i1−1 , xi1 , λ
(ki1+1)

i1+1 , . . . , λ
(kN )
N

)
− f0 (32)

ϕi1(xi1) ≈
n1∑

k1=1

· · ·
ni1−1∑

ki1−1=1

ni1+1∑

ki1+1=1

· · ·
nN∑

kn=1

⎡

⎢⎣
N∏

m=1
m �=i1

(
e1

(nm)T
ξ

(m)
km

)2

⎤

⎥⎦

× q
(
λ

(k1)
1 , . . . , λ

(ki1−1)

i1−1 , xi1 , λ
(ki1+1)

i1+1 , . . . , λ
(kN )
N

)
− ϕ0 (33)

where 1 ≤ i1 ≤ N .
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In this work, we are interested in at most bivariate Plain or Logaritmic HDMR
components, so the structure of these two methods’ components are given as follows

fi1i2(xi1 , xi2)

≈
n1∑

k1=1

· · ·
ni1−1∑

ki1−1=1

ni1+1∑

ki1+1=1

· · ·
ni2−1∑

ki2−1=1

ni2+1∑

ki2+1=1

· · ·
nN∑

kn=1

⎡

⎢⎣
N∏

m=1
m �=i1∧m �=i2

(
e1

(nm )T
ξ

(m)
km

)2

⎤

⎥⎦

× f
(
λ

(k1)
1 , . . . , λ

(ki1−1)

i1−1 , xi1 , λ
(ki1+1)

i1+1 , . . . , λ
(ki2−1)

i2−1 , xi2 , λ
(ki2+1)

i2+1 , . . . , λ
(kN )
N

)

− fi1(xi1) − fi2(xi2) − f0 (34)

ϕi1i2(xi1 , xi2)

≈
n1∑

k1=1

· · ·
ni1−1∑

ki1−1=1

ni1+1∑

ki1+1=1

· · ·
ni2−1∑

ki2−1=1

ni2+1∑

ki2+1=1

· · ·
nN∑

kn=1

⎡

⎢⎣
N∏

m=1
m �=i1∧m �=i2

(
e1

(nm )T
ξ

(m)
km

)2

⎤

⎥⎦

×q
(
λ

(k1)
1 , . . . , λ

(ki1−1)

i1−1 , xi1 , λ
(ki1+1)

i1+1 , . . . , λ
(ki2−1)

i2−1 , xi2 , λ
(ki2+1)

i2+1 , . . . , λ
(kN )
N

)

−ϕi1(xi1) − ϕi2(xi2) − ϕ0 (35)

where 1 ≤ i1 < i2 ≤ N .
The components obtained through (29), (32) and (34) are used to construct the Plain

HDMR approximants given in (10) while the Logarithmic HDMR approximants given
in (13) are determined by using relations (30), (33) and (35). Finally, these approxi-
mants allow us to obtain the Hybrid HDMR approximants given in (15). To execute
this last step we need to optimize the value of the hybridity parameter. The procedure
of the determination process of this optimized α parameter is given in the next section.

4 Hybridity parameter optimization process

The Hybrid HDMR method is needed to represent a multivariate function having a
hybrid nature. Hybrid nature means that the multivariate function under consideration
has no purely either additive or multiplicative nature. The Plain HDMR method works
well when the function to be represented has a purely or dominantly additive nature.
On the other hand, Logarithmic HDMR has its best performance when the given func-
tion has a purely or dominantly multiplicative nature. The Hybrid HDMR philosophy
uses the expansions of these two methods in a single expansion. The mentioned com-
bination is constructed under a parameter which is named as hybridity parameter. This
parameter controls the contribution levels of the two expansions in the representation
procedure of the given multivariate function through Hybrid HDMR. Hence, the most
important point in this work is to optimize the hybridity parameter to make this control
at its highest efficiency. This results in a better approximation through Hybrid HDMR
than the other two HDMRs.

When the relation given in (15) is examined carefully, it is easily seen that if the
hybridity parameter, α, is equal to 0 then all contributions come from Logaritmic
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HDMR expansion while if α parameter is equal to 1 then all contributions come from
Plain HDMR expansion for the approximation. However, the most important purpose
of the Hybrid HDMR method is to let these two expansions be effective on the repre-
sentation of the given multivariate function. This means that there should be a process
to specify the best α value to get the best representation. For this purpose, a functional
is defined as

G(α) ≡ ∥∥ f − h jk(α))
∥∥2 (36)

where f and h jk(α) stand for the given multivariate function and the Hybrid HDMR
approximant given in (15) respectively. The explicit form of the right hand side of this
relation is

∥∥ f − h jk(α))
∥∥2 =

b1∫

a1

dx1 · · ·
bN∫

aN

dxN W (x1, . . . , xN )

× [
f (x1, . . . , xN ) − h jk (x1, . . . , xN ;α)

]2 (37)

where 1 ≤ j, k ≤ N . When the fluationlessness theorem is applied to this N -tuple
integration, the following approximate relation is obtained as the result of the above-
mentioned integral structure

G(α) ≈
n1∑

k1=1

· · ·
nN∑

kn=1

[
N∏

i=1

(
e1

(ni )
T
ξ

(i)
ki

)2
]

×
[

f
(
λ

(k1)
1 , . . . , λ

(kN )
N

)
− h jk

(
λ

(k1)
1 , . . . , λ

(kN )
N ;α

)]2
(38)

Now, we have a polynomial structure in terms of α parameter. Next step is to determine
the α value that minimizes the value of this norm. This minimization criterion can be
given as follows

∂G

∂α
= 0 (39)

Using the value for α obtained from this relation in the Hybrid HDMR expansion, the
best Hybrid HDMR approximant can be determined for the given multivariate func-
tion. Any value inside or outside the interval [ 0, 1 ] may be obtained as the hybridity
parameter value at the end of this optimization procedure.

Now, the Hybrid HDMR approximants can be constructed through the Plain and
Logarithmic HDMR components given in the previous section under the optimized
hybridity parameter whose value is obtained through the relation (39).
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5 Numerical implementations

In this section, we present certain implementations to test the performance of Hybrid
HDMR approximants obtained through the optimization process of the hybridity
parameter with the help of the Fluctuationlessness Approximation Theorem. To show
the efficiency of the Hybrid HDMR method more clearly, the testing functions are
chosen as functions having different types of structures and Hybrid HDMR approx-
imants are obtained for these various testing functions. To measure the performance
of the Hybrid HDMR approximants, we use the relative error relation given in (16).

All computations are done by using MuPAD, Computer Algebra System [23], with
10 decimal digits precision. The program codes are run under Linux (Ubuntu 7.10)
Operating System. On the other hand, all the numerical results are given within 4-digits
precision for simplicity.

The following multivariate functions are chosen to construct numerical implemen-
tations for the performance examination

f1 (x1, . . . , x5) =
5∑

i=1
xi , f2 (x1, . . . , x5) =

[
5∑

i=1
xi

]3

,

f3 (x1, . . . , x5) =
[

5∑
i=1

xi

]5

, f4 (x1, . . . , x5) =
[

5∑
i=1

xi

]8

,

f5 (x1, . . . , x5) =
[

5∑
i=1

xi

]15

, f6 (x1, . . . , x5) =
[

5∑
i=1

xi

]20

,

f7 (x1, . . . , x5) =
[

5∑
i=1

xi

]25

, f8 (x1, . . . , x5) =
5∏

i=1
xi ,

f9 (x1, . . . , x5) = e(x1+x2+x3+x4+x5), f10 (x1, . . . , x5) = sin2(x1 + x2 + x5)

+ cos2(x3 + x4)

(40)

where they all have 5 independent variables. The first testing function, f1, has a purely
additive nature while the testing function, f8, has a purely multiplicative nature. The
other functions from f2 to f7 have hybridity nature at different levels. The last two
testing functions, f9 and f10 are exponential and trigonometric structures respectively.

We know from the previous works that the Plain HDMR method works well for
approximating purely and dominantly additive functions and the Logarithmic HDMR
method works well in representing purely and dominantly multiplicative structures.
Hybrid HDMR aims to successfully approximate the multivariate functions having
hybrid nature which means the functions that are neither dominantly additive nor dom-
inantly multiplicative. When we examine the relative error values given in Table 1,
these concluding remarks are proven through numerical examples. The first nine col-
umns of Table 1 are about the relative error values obtained for the Hybrid HDMR
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Table 1 Relative error values obtained for the testing functions

Nh00 Nh10 Nh20 Nh01 Nh02 Nh11 Nh12 Nh21 Nh22 Ns2 Nπ2

f1 0.0625 0.0 0.0 0.0019 0.0002 0.0 0.0 0.0 0.0 0.0 0.0002

f2 0.3403 0.0298 0.0004 0.0161 0.0023 0.0047 0.0021 0.0003 0.0003 0.0004 0.0025

f3 0.5883 0.1486 0.0135 0.0485 0.0089 0.0265 0.0079 0.0078 0.0106 0.0135 0.0116

f4 0.8054 0.3942 0.0980 0.0967 0.0258 0.0767 0.0270 0.0464 0.0474 0.9800 0.0476

f5 0.9561 0.7551 0.4074 0.0882 0.0578 0.1128 0.1109 0.1459 0.2185 0.4074 0.2200

f6 0.9789 0.8511 0.5528 0.0522 0.0635 0.0923 0.1948 0.1713 0.3583 0.5528 0.3584

f7 0.9872 0.8945 0.6351 0.0282 0.0694 0.0740 0.2998 0.1793 0.4773 0.6351 0.4795

f8 0.7627 0.3672 0.1035 0.0 0.0 0.0 0.0 0.0 0.0 0.1035 0.0

f9 0.3217 0.0479 0.0037 0.0 0.0 0.0 0.0 0.0 0.0 0.0037 0.0

f10 0.0945 0.0321 0.0006 0.0324 0.0029 0.0316 0.0027 0.0006 0.0005 0.0006 0.0038

Table 2 Optimized α values for each testing function

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

α 1.0 0.9602 0.8916 −0.2008 −0.7388 0.9602 0.9825 0.0 0.0 0.8475

approximants while the last two columns are for the bivariate Plain HDMR and Loga-
rithmic HDMR approximants respectively. Since this work proposes an optimization
process for obtaining the most appropriate hybridity parameter to get best approx-
imations, the value evaluated for α becomes very important issue in the numerical
implementations. Table 2 includes the optimized hybridity parameter values for each
implementation. These values are theα values evaluated for the Hybrid HDMR approx-
imant which gives the best representation of the testing function under consideration.

Now, the following discussions are given by taking the results of Tables 1 and 2
into consideration. The first testing function is successfully represented by bivariate
HDMR approximant. This is also true for some Hybrid HDMR approximants under
the hybridity parameter value 1.0 which means that only the Plain HDMR approxi-
mant is used in the representation process because of the nature of the Hybrid HDMR
expansion given in (15). The second testing function has a dominantly additive nature.
Hence, the Plain HDMR works well for representing this function. In addition, some
Hybrid HDMR approximants also work well as a result of the optimization of the
hybridity parameter and the α value is obtained as 0.9602 in this implementation. The
Hybrid HDMR approximants h21, h02, h02, h01 and h01 are the best representations
for the testing functions f3, f4, f5, f6 and f7 respectively. The relative error values
obtained for these testing functions are extremely better than the bivariate Plain HDMR
and Logarithmic HDMR approximants. These results show us that the optimization
of the hybridity parameter significantly effects the efficiency of Hybrid HDMR. The
function, f8, has a purely multiplicative nature and the Logarithmic HDMR approx-
imant works well in the representation of this function. Under the α value 0.0 which
means the only contribution comes from the Logarithmic HDMR expansion, some
Hybrid HDMR approximants can also exactly represent the given function. The ninth

123



J Math Chem (2012) 50:2223–2238 2237

testing function is an exponential one and the methods react in the same way that is
seen in the testing function, f8 which is purely multiplicative. The last testing function
is a trigonometric function and h22 is the best representation for this trigonometric
function. In the last example, the obtained α value is equal to 0.8475, which means
that the highest contribution comes from bivariate Plain HDMR approximant while
less contribution comes from the bivariate Logarithmic HDMR approximant.

6 Conclusion

In this work, we tried to represent a multivariate function having hybrid nature by
using Hybrid HDMR method with an optimized hybridity parameter. Hybrid HDMR
expansion is composed of two expansions. One of these expansions is selected as Plain
HDMR since it works well in representing the multivariate functions having purely
or dominantly additive nature. The second expansion is selected as an expansion of
an HDMR based method which works well in expressing functions having purely
or dominantly multiplicative nature. In this study, Logarithmic HDMR expansion is
inserted into the Hybrid HDMR expansion.

It is well known that taking all components of HDMR based methods increases
the mathematical and computational complexity of the method. In this sense, at
most the bivariate approximants are used to represent the given multivariate func-
tion through Plain, Logarithmic and Hybrid HDMR methods. Truncation at a level
in Hybrid HDMR may decrease the representation quality of the given function. To
handle this difficulty, the hybridity parameter, which manages the contribution level of
each expansion to the Hybrid HDMR structure, plays an important role. This results in
a need to optimize this parameter. The numerical results given in the previous section
show us that the optimized hybridity parameter dramatically effects the performance
of the Hybrid HDMR method. The optimization process of this work with the help of
the Fluctuationlessness Approximation Theorem is a successful attempt to get high
quality approximations for representing the multivariate functions.

In addition, a problematic case in the HDMR based methods is the evaluation pro-
cess of multiple integrals coming from the nature of method. The integrals appearing
in the Logarithmic HDMR method consists of natural logarithm of the given function
and this makes these integrals either hard or impossible to evaluate analytically. To
overcome this problem, we use the Fluctuationlessness Approximation Theorem. The
numerical results given in Table 1 also show the success of this theorem in the Hybrid
HDMR method.

In conclusion, a new algorithm including hybridity parameter optimization for the
Hybrid HDMR philosophy is developed in this work. The numerical results support
the satisfactory and acceptable performance of this new method.
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